

# Thyroid Disease in Cardiovascular Patients

Stuart R. Chipkin, MD
Research Professor,
School of Public Health and Health Sciences
University of Massachusetts



### Disclosure

### Stuart R. Chipkin, MD

— Nothing to disclose



### Brief Description of Thyroid Tests

#### TSH- pituitary hormone reflects thyroid status

- Affected by pituitary status, pressors, steroids, dilantin and other medications
- Single best measure of STEADY STATE thyroid status
- Generally should wait 2-3 months in-between tests

### T4- larger pool of hormone released from thyroid

- Carried by binding proteins
- fT4 represents"free" hormone but is not a direct measure
- Total T4 = free + protein-bound
- Converted in peripheral tissues to T3



### Brief Description of Thyroid Tests

- TSH- pituitary hormone reflects thyroid status
- T4- larger pool of hormone released from thyroid
- T3- smaller pool of more active hormone
  - More variable serum levels
  - Rarely is made in excess of T4 (T3 toxicosis)
- Thyroid peroxidase Antibodies (TPO- Ab)
  - Antibody against enzyme in gland
  - Often positive in autoimmune thyroid disease
- Thyroglobulin Antibodies(TG-Ab)
  - Antibody against protein made in gland
  - Often positive in autoimmune thyroid disease

# **Brief Description of Thyroid Tests**

- TSH- pituitary hormone reflects thyroid status
- T4- larger pool of hormone released from thyroid
- T3- smaller pool of more active hormone
- Thyroid peroxidase Antibodies (TPO- Ab)
- Thyroglobulin Antibodies(TG-Ab)

#### Thyrotropin Receptor Antibodies (TrAb)

- Antibodies which stimulate TSH receptor on thyroid cells
- Often positive in Graves' Disease

#### Thyroid Uptake and Scan

- Measures percent uptake of tracer amount of I-131
- High if endogenous production (Graves)
- Low in inflammatory states (thyroiditis)



#### **Case # 1**

71 year old woman with palpitations.

- Holter, ETT, echocardiogram all benign.
- Follow-up, labs: TSH = 0.05 mIU/ml (range is 0.5-4.0).
- No complaints of weight loss, heat intolerance, tremor, nervousness, new anxiety, loose bowels. No family history of thyroid disease

Examination: pulse=72; BP=128/84; BMI=27.4 kg/m<sup>2</sup>

- No lid lag or stare. No goiter. No bruits.
- Lungs: clear; Heart: S1 S2 normal.
- Extremities: no edema, good pulses
- Reflexes normal; No tremor.



71 y.o. woman with palpitations, benign cardiac workup and TSH of 0.07. Examination normal

Repeat TSH=0.03 mIU/ml and free T4= 1.3 ng/dl (range=0.5-1.5 ng/dl).

Would you recommend:

- A) Radioiodine uptake and scan
- B) Thyroid peroxidase antibodies
- C) Thyroglobulin antibodies
- D) Thyrotropin receptor antibodies
- E) All of the above
- F) Further cardiac diagnostic testing
- G) No further testing



### 71 y.o. woman with palpitations Examination normal and benign cardiac work-up with low TSH and normal T4.

- T3 is in normal range
- TPO antibodies are positive
- Radioactive iodine uptake is 22% (normal is up to 35%)

#### Your recommendation would be:

- A) No further work-up
- B) Repeat thyroid tests yearly
- C) Treat with radioactive iodine
- D) Treat with methimazole/PTU
- E) Recommend surgery (thyroidectomy)
- F) Treat with a beta-blocker



### Subclinical Hyperthyroidism

- Prevalence of 0.7-12.4%
  - Higher frequency when using 0.4-0.5 vs. 0.1 mIU/L
  - More common in women than men
  - More common in elderly
  - 10-30% are patients taking thyroid hormone
- Progression to overt hyperthyroidism= 1-5% per year
  - More often in elderly
  - More often with lower TSH values



### Cardiovascular Consequences Subclinical Hyperthyroidism

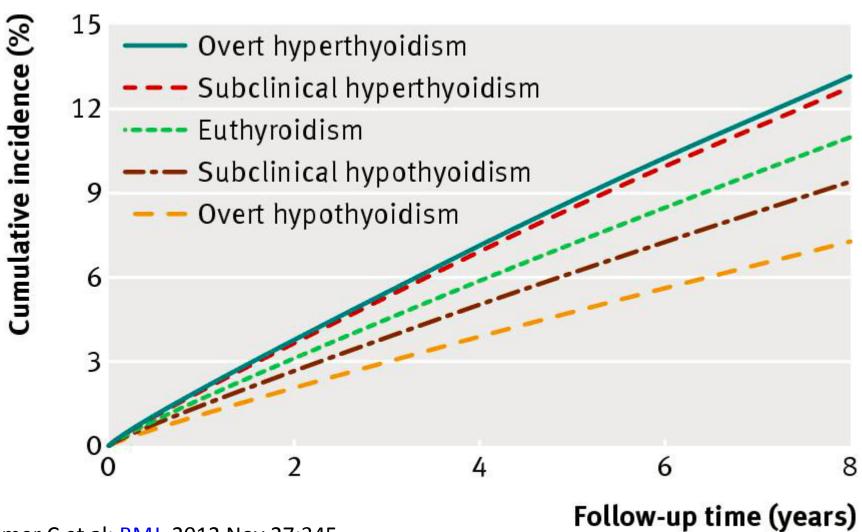
- Impaired exercise capacity
  - Reduced tolerance, maximal VO<sub>2max</sub> and anaerobic threshold
  - Reduction in peak workload
  - Reduction in ejection fraction during exercise
- Increased heart rate
- Increased left ventricular mass
  - Impaired left ventricular diastolic filling
- Increased risk for atrial arrhythmias

Aras D et al. Int J Cardiol 99:59–64, 2005 Biondi B et al. Cardiologia 44:443–449, 1999 Shargorodsky M et al. Thyroid 16:381–386, 2006 Biondi B et al. JCEM; 81:4224–4228, 1996 Mercuro G et al. JCEM 85:159–164, 2000



### Atrial arrhythmias

- Risk for atrial fibrillation (2-3 fold higher)
  - Frequency
    - Normal thyroid function= 2.3%
    - Overt hyperthyroidism= 13.8%
    - Subclinical hyperthyroidism= 12.7%
  - Risk factors:
    - Higher maximum P wave duration
    - Increased P wave dispersion
- Re-entrant atrioventricular nodal tachycardia
  - Short P-R interval




# Subclinical Hyperthyroidism and Cardiovascular Risk

| Study                  | Sample<br>size | TSH<br>mIU/L    | Age<br>(years) | Follow-up<br>(years) | Outcome                                                    |
|------------------------|----------------|-----------------|----------------|----------------------|------------------------------------------------------------|
| Sawin (1994)           | 248/1424       | 0.1-0.4<br><0.1 | >60            | 10                   | No increased mortality  ↑ A. fib (RR=1.6 and 3.1)          |
| Parle (2001)           | 71/1191        | <0.5            | >60            | 10                   | <ul><li>Mortality</li></ul>                                |
| Auer (2001)            | 613/23,638     | <0.4            | >45            | 13                   | ↑ A. fib (5x)                                              |
| Gussekloo (2004)       | 17/599         | <0.3            | 85-89          | 4                    | ↑ CV mortality                                             |
| Walsh (2005)           | 39/2108        | 0.1-0.4<br><0.1 | 51 <u>+</u> 15 | 20                   | No increased mortality                                     |
| Van den Beld<br>(2005) | 44/403         | <0.4            | 73-94          | 4                    | TSH not related to mortality fT4 correlated with mortality |
| Cappola (2006)         | 47/3233        | 0.1-0.4<br><0.1 | 74 <u>+</u> 7  | 13                   | No increased CV death;     A. fib                          |
| Selmer (2012)          | 435/6276       | 0.1-0.2<br><0.1 | 48.9           | 10                   | RR= 1.16<br>RR= 1.41                                       |



### Atrial Fibrillation in Danish Community



Selmer C et al; <u>BMJ.</u> 2012 Nov 27;345



#### Quality of Evidence- Subclinical Hyperthyroidism

|                                          | Strength of                    | Association                | Benefits of Treatment                              |              |  |
|------------------------------------------|--------------------------------|----------------------------|----------------------------------------------------|--------------|--|
| <b>Clinical Condition</b>                | TSH= 0.1-0.45                  | TSH < 0.1                  | TSH= 0.1-0.45                                      | TSH < 0.1    |  |
| Progression to Overt<br>Hyper            | Insufficient                   | Good                       | None                                               | None         |  |
| Adverse Cardiac<br>Endpoints (not A Fib) | Fair (data did no<br>TSH range | •                          | None                                               | None         |  |
| Atrial Fibrillation                      | Insufficient                   | Good                       | None                                               | None         |  |
| Cardiac Dysfunction                      | Insufficient Fair              |                            | Insufficient (data did not distinguish TSH ranges) |              |  |
| Systemic Hyperthyroid & Neuropsych Sx    | Insufficient                   | Insufficient               | None                                               | Insufficient |  |
| Reduced Bone<br>Density                  | None                           | Fair (post-<br>menopausal) | None                                               | Fair         |  |
| Fractures                                | None                           | Insufficient               | None                                               | None         |  |

Surks MI, et al; JAMA 291:228-238, 2004



# 71 y.o. woman with palpitations, benign cardiac work-up and TSH of 0.05 mIU/ml and normal T4. Examination normal

- T3 is in normal range
- TPO antibodies are positive
- Radioactive iodine uptake is 22% (normal is up to 35%)

With this new information, now your recommendation would be:

- A) No further work-up
- B) Repeat thyroid tests yearly
- C) Treat with radioactive iodine
- D) Treat with methimazole/PTU
- E) Recommend surgery for thyroidectomy
- F) Treat with a beta-blocker



### Alternative case

- Same as before- Woman with palpitations, benign cardiac work-up, normal examination but now:
- Age is now 45
- TSH= 0.3 mIU/L (free T4 and thyroid scan/uptake are still normal)
- Your recommendation would be:
- A) No further work-up
- B) Repeat thyroid tests every 6-12 months
- C) Treat with radioactive iodine
- D) Treat with methimazole/PTU
- E) Recommend surgery for thyroidectomy
- F) Treat with a beta-blocker



# Recommendations: Subclinical Hyperthyroidism

|              | TSH < 0.1                                                             | TSH = 0.1-0.4                  |
|--------------|-----------------------------------------------------------------------|--------------------------------|
| AGE OVER 65  | TREAT DEFINITIVELY - RADIOACTIVE IODINE - ANTI-THYROID MEDS - SURGERY | TREAT - IF PRESENCE OF CV RISK |
| AGE UNDER 65 | TREAT - IF SYMPTOMS OR CV RISK                                        | MONITOR                        |

European Thyroid Association Eur Thyroid J. 2015 Sep; 4(3): 149–163.



### Case # 2

- 60 year old woman is referred to you for treatment of lipids
- PCP noted hyperlipidemia and she is strongly against taking statin medications.
  - History hypertension on HCTZ. Non-smoker. Father had a CABG (age 62) and mother has HTN and high cholesterol.
  - Patient is trying to exercise more since being told of high cholesterol. Walks 30 minutes per day, three times per week (about 2 miles). Has also made some dietary changes (increasing dietary fiber).
- No excess fatigue, no recent weight gain (steady 15-20 lbs increase since going through menopause), no constipation, no excess dry skin, no cold intolerance. Some difficulty concentrating- attributes to post-menopause.
- No complaints of chest/arm/jaw pain or pressure. No SOB or edema. No symptoms of claudication or TIA.



### 60 y.o. woman, HTN (HCTZ), non-smoker, perimenopausal weight gain, trouble concentrating

- Examination: Pulse=80, BP=138/88. BMI=29.5 kg/m<sup>2</sup>. Eye movements intact. No carotid bruits or JVD. Mildly enlarged thyroid. Lungs: clear. Heart: S1 S2 with 2/6 systolic murmur. Abdomen: benign and no pedal edema. Reflexes intact (not hung-up).
- Laboratory studies:
  - Electrolytes normal (K=4.0, BUN/creat=18/0.8).
  - LFT's normal.
  - Total cholesterol=230 mg/dl;
     HDL=48 mg/dl;
     Triglycerides=165 mg/dl;
     LDL= 149 mg/dl.
  - TSH= 9 mU/ml (range=0.5-4.0 mU/ml).
  - Free T4= 0.7 (range=0.5-1.54 ng/dl).



### How many of you have:

- Dry skin
- Poor memory
- Slow thinking
- Muscle weakness or cramping
- Fatigue
- Cold intolerance
- Puffy eyes
- Constipation
- Hoarseness

- A) None of these
- B) One of these
- C) Two of these
- D) Three or more of these



### Subclinical Hypothyroidism

- Using a list of symptoms:
  - Dry skin, poor memory, slow thinking, muscle weakness, fatigue, muscle cramping, cold intolerance, puffy eyes, constipation, hoarseness
  - Euthyroid: 12.1%
  - Overt hypothyroid: 16.6%
  - "Mild" hypothyroidism: 13.8% (p<0.05 vs. euthyroid)
- Change in symptoms increased the likelihood of thyroid disease
- Community survey of woman
  - Subclinical hypothyroidism not associated with decrease in well-being or quality of life.

Canaris GJ et al; J Gen Intern Med 12:544–550, 1997 Bell RJ, et al; Clin Endocrinol 66:548–556, 2007



### Impact of Hypothyroidism on Heart

(Similar changes in Subclinical Hypothyroidism)

- Increased systemic vascular resistance
- Diastolic dysfunction
- Reduced systolic function
- Decreased cardiac preload
- Related changes
  - Increased arterial stiffness
  - Endothelial dysfunction
  - Altered coaguability
  - Increased levels of C-reactive protein



# Vascular Changes in Subclinical Hypothyroidism

- Elevated cholesterol and LDL cholesterol
- Increased Apolipoprotein B (Apo B)
- Increased intima-media thickness (carotid)
- No differences in myocardial function compared with euthyroid controls at baseline
  - No changes after dobutamine stress



AMERICAN COLLEGE of CARDIOLOGY

- Whickham Survey and NHANES III- no relationships
- Healthy Aging and Body Composition Study:
  - TSH >5.5 mIU/L associated with 10 mg/dl increase in total cholesterol
- Middle Age Population
  - For every increase in TSH of 1 mIU/L, rise of:
  - 3.5 mg/dl total cholesterol in women
  - 6.2 mg/dl rise in total cholesterol in men
- Among older women with TSH > 5.5 mIU/L,
  - LDL was 13% higher
  - HDL was 12% higher
  - LDL:HDL was 29% higher

TunbridgeWM,et al. Clin Endocrinol (Oxf) 7:495–508, 1977 Hueston WJ and PearsonWS. Ann Fam Med 2:351–355, 2004 Kanaya AM, et al. Arch Intern Med, 162:773–779, 2002 Bindels AJ, et al. Clin Endocrinol, 50:217–220 1999



# Effect of Replacing Thyroid Hormone on Lipid Status

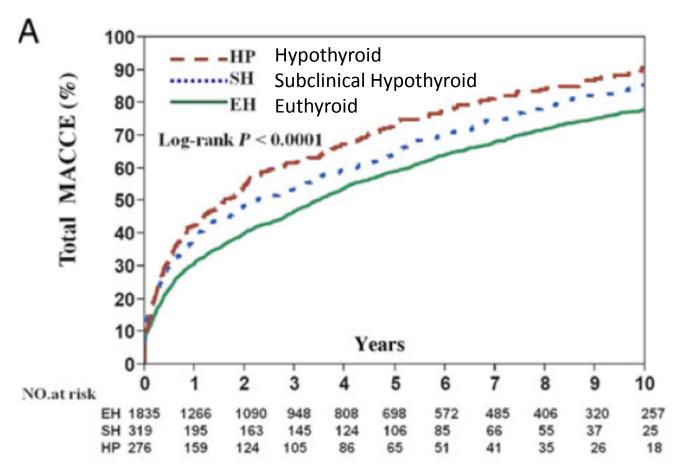
- Overall, conflicting results
  - Most studies: no impact in subclinical hypothyroid
  - Few studies: small decrease in LDL (if elevated at baseline)
  - More likely to see decrease in LDL with higher baseline TSH value



# Replacing Thyroid Hormone on Heart and Vascular System

- Decrease in SVR (not all studies)
- Decrease in mean arterial pressure
- Endothelial dependent vasodilation
- Decreased carotid intima-media thickness

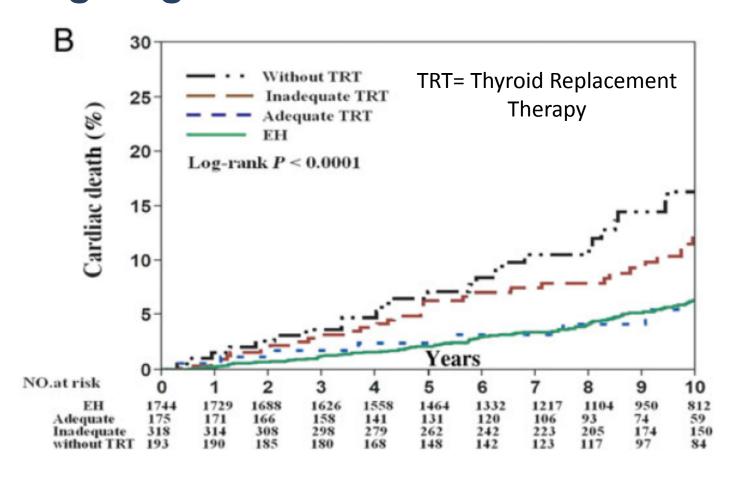
Monzani F, et al. J Clin Endocrinol Metab 86:1110–1115, 2001 Yazici M, et al. Int J Cardiol 95:135–143, 2004 Monzani F, J Clin Endocrinol Metab 89:2099–2106, 2004 Razvi S, et al. J Clin Endocrinol Metab 92:1715–1723, 2007




# Other CV Risk Factors and Subclinical Hypothyroidism

- Lp(a) not related to TSH (unless over 12 mIU/L)
  - No change with T4 treatment
- Homocysteine not related to TSH
  - No change with T4 treatment
- Coagulation parameters inconsistent
  - More consistent in overt hypothyroidism
- C-reactive protein higher in subclinical TSH hypo
  - Predicted CV disease in men under age 50 (OR=3.4)
  - Not different in NHANES III
  - No change with T4 treatment

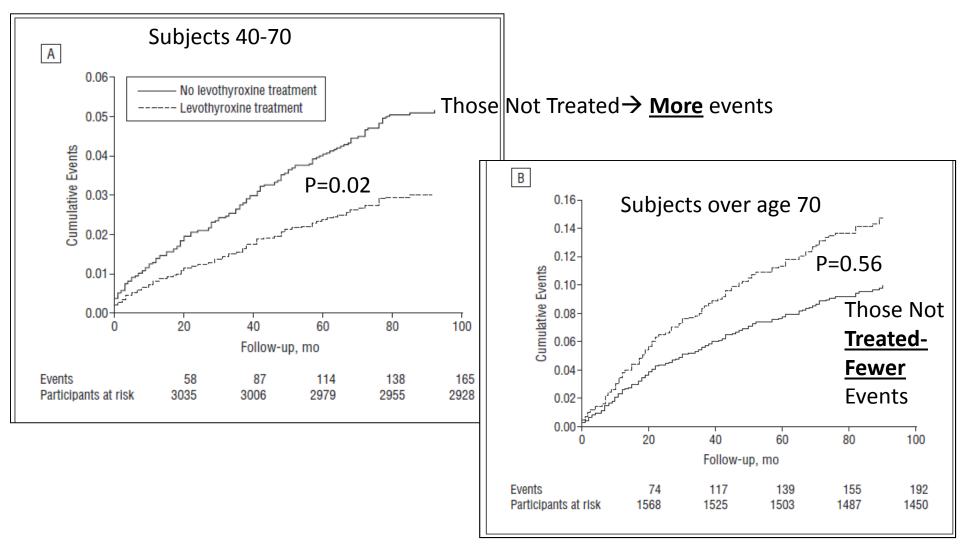
Kvetny J et al. Clin Endocrinol 61:232–238, 2004 Hueston WJ, et al. Clin Endocrinol (Oxf) 63:582–587, 2005 Monzani F,. J Clin Endocrinol Metab 89:2099–2106, 2004


# Impact of Thyroid Status on Adverse CV Events in Patients Undergoing Percutaneous Intervention

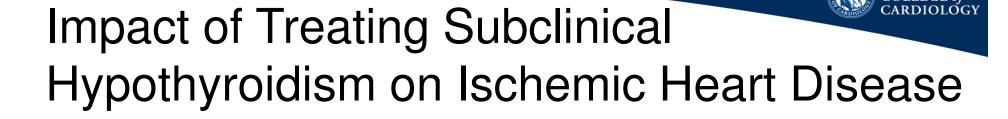


Zhang et al; European Heart Journal (2016) 37, 2055-2065




# Impact of Thyroid Replacement: Patients Undergoing Percutaneous CV Intervention




Zhang et al; European Heart Journal (2016) 37, 2055–2065



# Observational Study of Treating Subclinical Hypothyroidism on Ischemic Heart Disease



Razvi S et al; Arch Intern Med. 2012;172(10):811-817



|              | Patients, No. (%) |           | Event     |           |                          |
|--------------|-------------------|-----------|-----------|-----------|--------------------------|
| Age Group, y | Treated           | Untreated | Treated   | Untreated | HR <sup>a</sup> (95% CI) |
| 40-50        | 433               | 384       | 8 (1.8)   | 9 (2.3)   | 0.86 (0.09-18.92)        |
| 51-60        | 642               | 576       | 24 (3.7)  | 29 (5.0)  | 0.43 (0.16-1.15)         |
| 61-70        | 560               | 498       | 22 (3.9)  | 43 (8.6)  | 0.41 (0.17-0.97)         |
| 71-80        | 504               | 454       | 48 (9.5)  | 29 (6.4)  | 1.06 (0.62-1.70)         |
| 81-90        | 268               | 296       | 35 (13.1) | 28 (9.5)  | 1.36 (0.57-3.20)         |
| 91-107       | 51                | 66        | 4 (7.8)   | 5 (7.6)   | 1.67 (0.09-31.4)         |

<sup>&</sup>lt;sup>a</sup>Data adjusted for sex, BMI, socioeconomic deprivation score, total cholesterol level, index TSH, smoking status, systolic and diastolic BP, diabetes status, and levothyroxine use.

Razvi S et al; Arch Intern Med. 2012;172(10):811-817



# US Preventive Task Force Screening and treatment of subclinical hypothyroidism

#### No improvement in:

- Quality of life,
- Cognitive function,
- Blood pressure, or body mass index.

#### Potential beneficial effects on:

 Lipid levels, but effects not statistically significant and of uncertain clinical significance 60 y.o. woman, HTN (HCTZ), non-smoker peri-menopausal weight gain, trouble concentrating TSH=9 (high) and fT4=0.7 (low-normal) (remember- she hates statins)

#### You would recommend:

- A) Start statin therapy
- B) Start resin therapy
- C) Start statin therapy and thyroid hormone
- D) Start levothyroxine
- E) Increase exercise and repeat labs in 8-12 weeks
- F) Start iodine supplements



# **Quality of Evidence- Treating Subclinical Hypothyoidism**

|                                        | Strength of       | Association  | on                                  | Benefits of Treatment           |  |  |
|----------------------------------------|-------------------|--------------|-------------------------------------|---------------------------------|--|--|
| Clinical Condition                     | TSH= 4.5-10       | TSH > 10     | Awa                                 | it results from                 |  |  |
| Progression to Overt<br>Hypothyroidism | Good              | Good         | TRUST (Thyroid                      |                                 |  |  |
| Adverse Cardiac<br>Endpoints           | Insufficient      | Insufficient | Hormone Replacement for Subclinical |                                 |  |  |
| Elevated total/LDL<br>Cholesterol      | Insufficient      | Fair         |                                     | othyroidism)<br>,000 older      |  |  |
| Cardiac Dysfunction                    | Data did not dist | tinguish TSH | •                                   | ubjects over 5                  |  |  |
| Systemic Hypothyroid<br>Sx             | None              | Insufficient | _                                   | ear period<br>started Feb 2013) |  |  |
| Neuropsych Sx                          | None              | Insufficient | (3                                  | started reb 2013)               |  |  |

Based on Surks MI, et al; JAMA 291:228-238, 2004 Also *Arch Intern Med*;172(10):811-817, 2012



# Thank you and Safe Travel.



Questions?



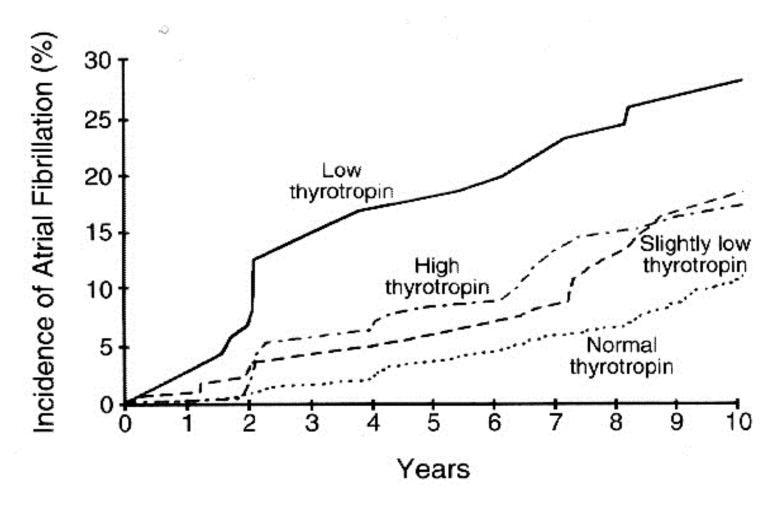


# Subclinical Hyperthyroidism Conflicting results on overall mortality

- All-cause and cardiovascular mortality were higher in a group of individuals with SH(serum TSH<0.5mU/L) aged ≥ 60 years at 1, 2, and 5 years of follow-up, but not after 10 years of follow-up (271).
- Another study- increase in mortality over 4 years of follow-up among persons aged <u>></u> 85 years (267),
- Third study, individuals with SH and concomitant heart disease had an increase in cardiovascular and all-cause mortality (272).
- But two other longitudinal population-based studies reported no increase in overall mortality in persons with SH (255,273).
- Two recent meta-analyses
  - All-cause mortality risk in SH progressively increases with age (274), which might explain the conflicting reports.
  - No statistically significant increase in mortality in SH (275)



# Subclincial Hyperthyroidism – Risk of Fracture by Meta-analysis


|                                                         | Euthyroidism         |                              | Subclinical<br>Hyperthyroidism |                              |                          | Higher Fracture         | Higher Fracture                        |           |
|---------------------------------------------------------|----------------------|------------------------------|--------------------------------|------------------------------|--------------------------|-------------------------|----------------------------------------|-----------|
| Fracture Outcome by Study                               | No. With<br>Fracture | Total No. of<br>Participants | No. With<br>Fracture           | Total No. of<br>Participants | Hazard Ratio<br>(95% CI) | Risk in<br>Euthyroidism | Risk in Subclinical<br>Hyperthyroidism | Weight, % |
| Hip fracture                                            |                      |                              |                                |                              |                          |                         |                                        |           |
| Cardiovascular Health Study <sup>8</sup>                | 378                  | 2853                         | 34                             | 159                          | 1.52 (1.07-2.17)         |                         |                                        | 23.5      |
| Health, Aging, and Body Composition Study <sup>37</sup> | 171                  | 2347                         | 7                              | 82                           | 0.94 (0.44-2.00)         |                         |                                        | 5.9       |
| Osteoporotic Fractures in Men Study (MrOS) <sup>7</sup> | 51                   | 1411                         | 3                              | 30                           | 3.09 (0.96-9.94)         | -                       |                                        | 2.5       |
| EPIC-Norfolk Study <sup>38</sup>                        | 189                  | 11986                        | 10                             | 360                          | 1.38 (0.73-2.61)         | _                       | -                                      | 8.2       |
| HUNT Study <sup>39</sup>                                | 1507                 | 31377                        | 70                             | 945                          | 1.24 (0.98-1.58)         |                         |                                        | 42.6      |
| Invecchiare in Chianti Study (InCHIANTI) <sup>21</sup>  | 45                   | 1066                         | 7                              | 87                           | 2.03 (0.91-4.52)         | -                       |                                        | 5.3       |
| Leiden 85-Plus Study <sup>40</sup>                      | 34                   | 456                          | 3                              | 23                           | 1.89 (0.58-6.15)         |                         | ·                                      | 2.5       |
| Osteoporosis and Ultrasound Study (OPUS) <sup>41</sup>  | 6                    | 1172                         | 1                              | 212                          | 0.85 (0.10-7.06)         | <del></del>             | <b>→</b>                               | 0.8       |
| Rotterdam Study <sup>42</sup>                           | 106                  | 1611                         | 10                             | 120                          | 1.03 (0.54-1.99)         |                         |                                        | 7.8       |
| Sheffield Study <sup>6</sup>                            | 3                    | 285                          | 1                              | 11                           | 21.43 (1.59-289)         |                         | <b>─</b>                               | 0.5       |
| Busselton Health Study <sup>19</sup>                    | 44                   | 1907                         | 0                              | 53                           | 0.55 (0.03-9.20)         | <del></del>             | <b>→</b>                               | 0.4       |
| Overall ( $\tau^2 = 0.01$ )                             | 2534                 | 56471                        | 146                            | 2082                         | 1.36 (1.13-1.64)         |                         | $\Diamond$                             | 100.0     |

| Fracture Outcome by                       | Euthyroid            | ism                          | Subclinica<br>Hyperthy |                              |                          | Higher Fracture | Higher Fracture                        |             |
|-------------------------------------------|----------------------|------------------------------|------------------------|------------------------------|--------------------------|-----------------|----------------------------------------|-------------|
| Thyroid-Stimulating Hormone Levels, mIU/L | No. With<br>Fracture | Total No. of<br>Participants | No. With<br>Fracture   | Total No. of<br>Participants | Hazard Ratio<br>(95% CI) | Risk in         | Risk in Subclinical<br>Hyperthyroidism | P for Trend |
| Hip fracture <sup>a</sup>                 |                      |                              |                        |                              |                          |                 |                                        |             |
| 0.45-4.49                                 | 2534                 | 56471                        |                        |                              | 1 [Reference]            | 1               |                                        |             |
| 0.10-0.44                                 |                      |                              | 99                     | 1568                         | 1.34 (1.01-1.77)         |                 |                                        | .001        |
| <0.10                                     |                      |                              | 47                     | 510                          | 1.61 (1.21-2.15)         |                 |                                        |             |

Blum MR et al; JAMA. 2015; 313:2055-2065



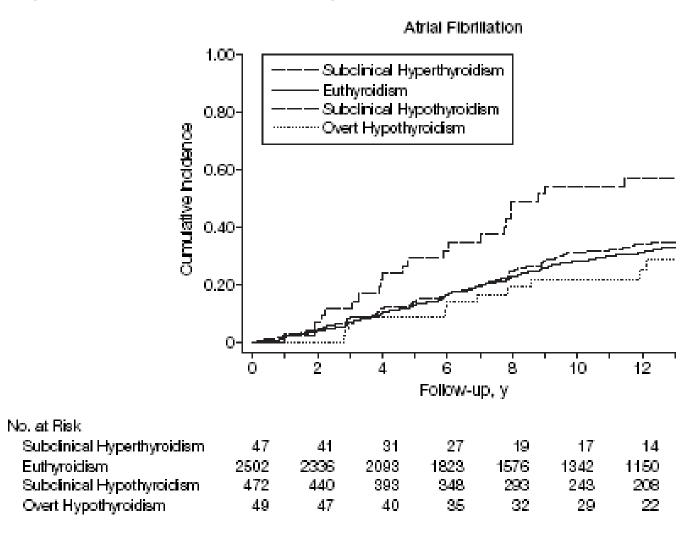
# Cumulative Atrial Fibrillation (>60 years old) Based on Baseline Serum TSH Values



Sawin CT et al. N Engl J Med 1994;331:1249-1252.



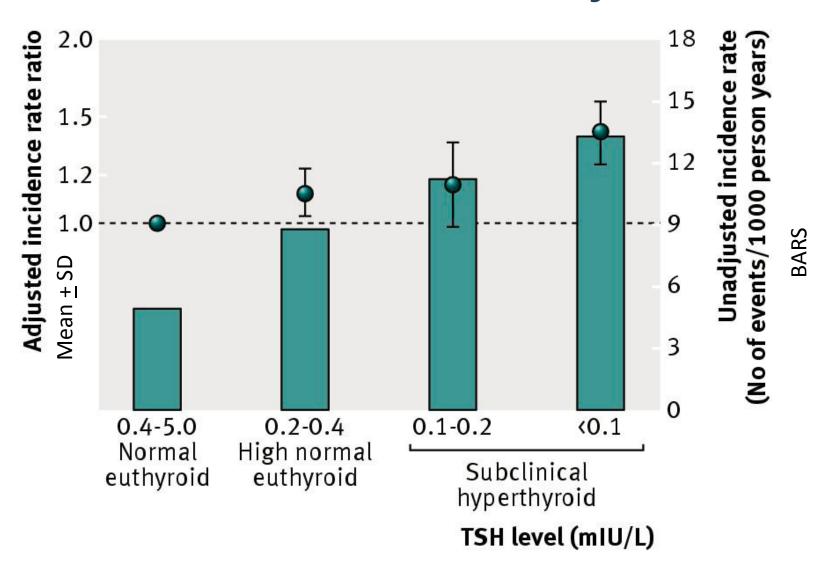
Table 8. Subclinical Hyperthyroidism: When to Treat


| Factor                      | TSH~(<0.1~mU/L)   | $TSH~(0.1-0.5~mU/L)^{a}$ |
|-----------------------------|-------------------|--------------------------|
| Age > 65                    | Yes               | Consider treating        |
| Age < 65 with comorbidities |                   |                          |
| Heart disease               | Yes               | Consider treating        |
| Osteoporosis                | Yes               | No                       |
| Menopausal                  | Consider treating | Consider treating        |
| Hyperthyroid symptoms       | Yes               | Consider treating        |
| Age < 65, asymptomatic      | Consider treating | No                       |

 $<sup>^{\</sup>rm a}Where~0.5\,mU/L$  is the lower limit of the normal range.

Bahn RS et al; THYROID; 21 (6): 593-641, 2011

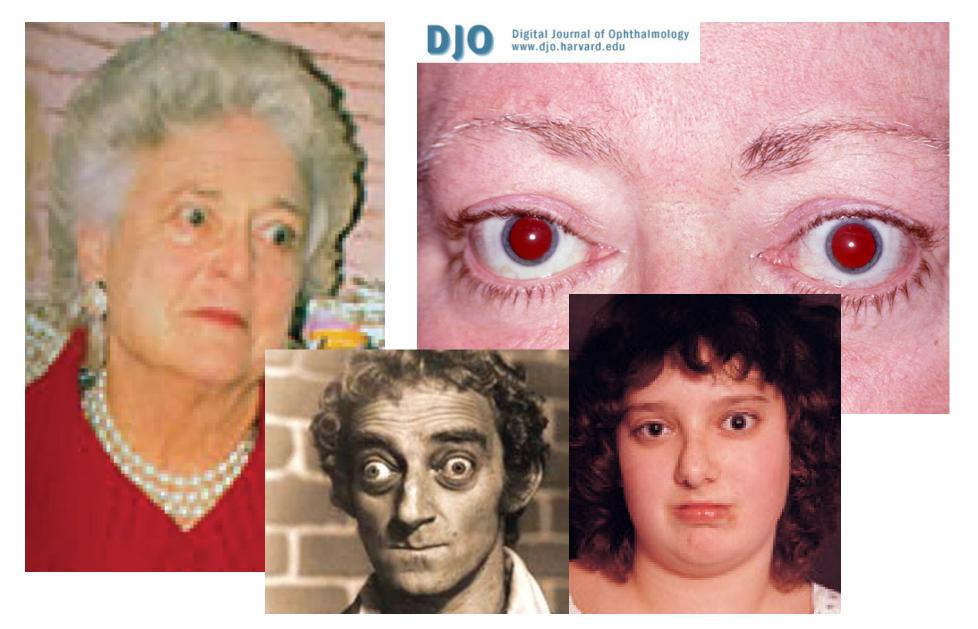



### Risk for Atrial Fibrillation Among Elderly Patients with Thyroid Disease



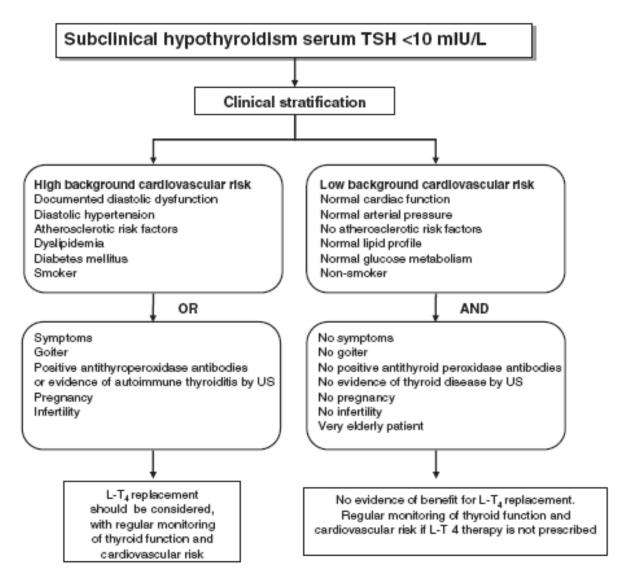
Cappola AR et al; JAMA 295: 1033-1041, 2006




### Rates of Atrial Fibrillation by TSH



Selmer C et al; <u>BMJ.</u> 2012 Nov 27;345




# **Eye findings- Hyperthyroidism**



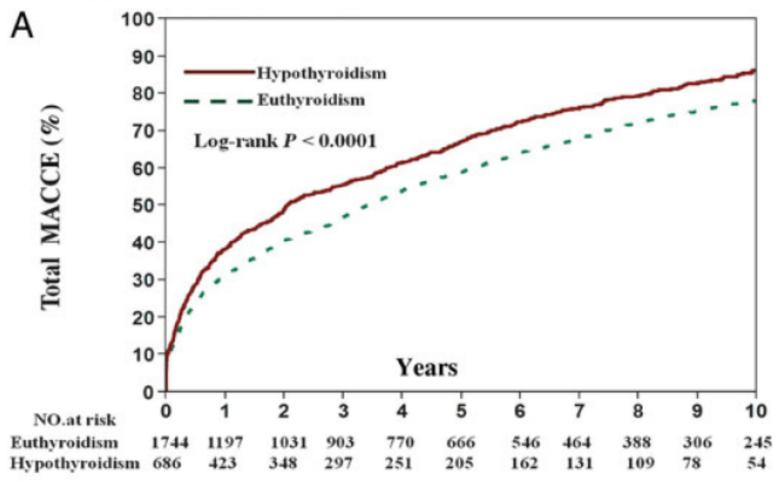


#### One approach to Subclinical Hypothyroid Patient





#### **ALTERNATE CASE:**


72 y.o. woman, HTN (HCTZ), non-smoker, peri-menopausal with weight gain and trouble concentrating TSH=16 (high) and fT4=0.4 (low) (remember- she hates statins)

#### You would recommend:

- A) Start statin therapy
- B) Start resin therapy
- C) Start statin therapy and thyroid hormone
- D) Start levothyroxine
- E) Increase exercise and repeat labs in 8-12 weeks
- F) Start thyroid extract (combination T4/T3 preparation)



# Impact of High TSH on Percutaneous Coronary Intervention



Zhang et al; European Heart Journal (2016) 37, 2055–2065



Table 3 Hazard ratios for major adverse cardiovascular and cerebral events in patients with hypothyroidism vs. euthyroidism

| Variable              | Adjusted HR <sup>a</sup> | 95% CI      | P-value |
|-----------------------|--------------------------|-------------|---------|
| MACCE                 | 1.28                     | 1.13 – 1.45 | 0.0001  |
| Cardiac death         | 1.14                     | 0.75 - 1.69 | 0.54    |
| Myocardial infarction | 1.25                     | 1.01 – 1.53 | 0.037   |
| Heart failure         | 1.46                     | 1.13-1.88   | 0.004   |
| Revascularization     | 1.26                     | 1.10-1.43   | 8000.0  |
| Stroke                | 1.62                     | 1.04-2.49   | 0.04    |

<sup>&</sup>lt;sup>a</sup>Adjusted for age, gender, diabetes, hypertension, dyslipidaemia, family of CAD, renal failure, current smoking, heart failure, history of MI, number of diseased vessels, stent type, aspirin, β-blockers, ACE inhibitors, and statins.

Zhang et al; European Heart Journal (2016) 37, 2055-2065